Your diagnosis

About RET-fusion+ NSCLC

About RET-fusion+ NSCLC

If you have been told that you have RET-fusion+ NSCLC, you might be wondering what this means.

Firstly, NSCLC stands for 'non-small cell lung cancer' – you can learn more about what this is here. About 85% of people with lung cancer have NSCLC.1

But what does RET-fusion+ mean? To understand that, we need to learn a bit more about 'DNA'.

Your body is made up of trillions of tiny building blocks called cells. Inside each cell is DNA. DNA is like a set of instructions that tell your cells what to do. They tell the cell to make certain things, when to grow or multiply, when to move around, and even when it is time to die.2

Normally your DNA helps keep your cells in a careful balance,3 so that they are multiplying and dying at a similar speed. But sometimes something goes wrong, and the DNA changes. This can cause cells to grow too fast and eventually make a tumour.2

RET-fusion+ means that you have a change in a small part of your DNA (the small part is called a ‘gene’) that makes a protein called RET (or 'rearranged during transcription'). This bit of DNA and the protein it makes are responsible for how certain parts of your body work, including your gut and your urinary system (kidneys and bladder).4

RET doesn’t exist in healthy lungs – the cells would normally ignore that bit of information in your DNA. But in RET-fusion+ NSCLC, the change in the gene means that your lungs cells start making a damaged version of the RET protein. When this happens, your cells start to grow and multiply out of control, and eventually they build up and become tumours.4

Only about 1% to 2% of people with NSCLC have a change in their RET gene.5 We don’t know exactly what causes the gene to change in somebody with RET-fusion+ NSCLC, but you can learn about some risk factors for lung cancer generally further down this page.

Click on one of the options below to learn more 

Deoxyribonucleic acid
Non-small cell lung cancer
Rearranged during transfection

  1. Elliot J et al. PLoS One 2020; 15(2): e0229179.
  2. Cancer Research UK. Genes, DNA and cancer. 2020. Available at: Accessed October 2021.
  3. Cooper JP & Youle RJ. Curr Opin Cell Biol 2012; 24(6): 802–803.
  4. Choudhury NJ & Drilon A. Transl Lung Cancer Res 2020; 9(6): 2571–2580.
  5. Stinchcombe TE. Ther Adv Med Oncol 2020; 12: 1758835920928634.
  6. Gautschi O et al. J Clin Oncol 2017; 35(13): 1403–1410.
  7. Drilon A et al. J Thorac Oncol 2018; 13(10): 1595–1601.
  8. SEER Cancer Stat Fact Sheets: Lung and Bronchus Cancer. Available at: Last accessed October 2021.
  9. Drilon A et al. J Thorac Oncol 2018; 13(10): 1595–1601.
  10. Digumarthy SR et al. Cancers 2020; 12: 693.
  11. National Comprehensive Cancer Network (NCCN). NCCN clinical practice guideline in oncology: non-small cell lung cancer, Version v1 2022.
  12. Field RW & Withers BL. Clin Chest Med 2012; 33(4): 10.1016/j.ccm.2012.07.001.
  13. World Health Organization (WHO). Ambient (outdoor) air quality and health. 2018. Available at: Accessed October 2021.
  14. Berrington de González A et al. J Med Screen 2008; 15(3): 153–158.
  15. Friedman DL et al. J Natl Cancer Inst 2010; 102(14): 1083–1095.
  16. American Cancer Society. Radon and Cancer. 2015. Available at: Accessed October 2021.
  17. Shimizu Y et al. Radiat Res 1990; 121(2): 120–141.
  18. Schwartz AG & Ruckdeschel JC. Am J Respir Crit Care Med 2005; 173(1): 16–22.
  19. Shiels MS et al. J Acquir Immune Defic Syndr 2009; 52(5): 611–622.
  20. Winstone TA et al. Chest 2013; 143(2): 30–314.
  21. Shaw AT et al. J Clin Oncol 2009; 27(26): 4247–4253.
  22.  She T et al. Clin Lung Cancer 2020; 21(5): e349–e354.
  23. Drilon A et al. N Engl J Med 2020; 383(9): 813–824.
  24. Curigliano C et al. Abstract 9089 presented at the American Society of Clinical Oncology (ASCO) Annual Meeting; 4–8 June 2021; virtual format.